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Quasi-Analytic Model of OTHR Clutter from Equatorial Bubbles in the Ionosphere

Paul A. Bernhardt
Plasma Physics Division

Naval Research Laboratory
Washington, DC 20375

Abstract

Ground clutter for the over-the-horizon radar (OTHR) sky wave becomes Doppler shifted
because the ionosphere through which the radio rays are propagating changes. One source of
these changes is ionospheric bubbles which rise vertically through a horizontally stratified
plasma near the equator. The rising plume structures are formed when gravity, neutral winds
or external electric fields act on the F-region plasma. The effect of these ionospheric
disturbances can be simulated by tracing rays through physics based models of the equatorial
bubbles. For the physics based models, exact solutions for internal electric potentials are
derived assuming linear or circular symmetry to the density structures imbedded in the
background plasma. A wide variety of analytic solutions for electric potentials are found for
both density cavities and density enhancements. Quasi-analytic solutions for the transport of
the bubbles are derived using the continuity equation for the plasma with production and loss
terms neglected. The analytic models of the electric fields produce incompressible motion
that transports the locations of "plasma cells" but do not change the density of the plasma in
each cell. This Lagrangean approach employs a time dependent coordinate mapping of the
undisturbed layer grid. Using internal electric potentials of the bubbles and external
polarizations of the F-layer as a whole, a transport model yields tilted plasma plumes that
move through the F-Region. This time-dependent computer model provides useful plasma
densities in a fraction of the time for fully numerical simulations. The electric potential
derived in the models can be directly applied to the ray trace computations to yield
predictions for Doppler shifts in the unstable ionosphere.

I. Introduction

High frequency (HF) over the horizon radar (OTHR) systems can track aircraft, missiles and
ships for thousands of kilometers. These distances are achieved with sky-wave propagation
that involves reflection and refraction in the earth's ionosphere. Under disturbed ionospheric
conditions, the radar return spectra can be broadened by the motion of structures in the
ionosphere where the radar path propagates. Radar signals that propagate near the equator
can encounter plasma bubbles that are formed after sunset at the bottomside of the F-layer.
When the ionosphere is no longer illuminated by the sun, ion-electron recombination causes
the bottom of the F-region to become steeper. Simultaneous with this steepening, the layer is
lived by electric fields driven by the dusk terminator neutral winds. This process causes the
F-layer to become unstable as the Rayleigh-Taylor instability forms bubbles that form on the
bottom and subsequently rise through the layer. The purpose of this report is to formulate a
model of these bubbles and to use ray-trace techniques to determine the effects that
equatorial structures with have on OTHR clutter.

Manuscript approved October 6, 2005.



OTHR clutter is primarily the result of backscatter from the ground that reflects the radar
signal back to the source with a range delay. Motion of the ground reflection surface such as
ocean waves can induce Doppler spread in the clutter signal. Even if the ground surface is
fixed, spread clutter can be produced if the ionosphere changes in time along the radar path.
The sources of short term ionospheric fluctuations that can produce Doppler spread in the
radar clutter are (a) decay of the layer after sunset, (b) motion of the layer by tidal electric
fields, (c) traveling ionospheric disturbances caused by acoustic gravity waves propagating in
the neutral atmosphere, and (d) plasma instabilities that cause large scale irregularities in the
plasma. The equatorial bubble is the most import irregularity that produces clutter at low
latitudes. The ionospheric bubble OTHR clutter study proceeds in two phases. First a quasi-
analytic model of equatorial bubbles is generated that (1) replicates all the features of
naturally occurring ionospheric density structures and (2) can be used to calculate radar paths
using ray tracing through the electron densities. Rays will be traced from a ground
transmitter site through this model ionosphere to eventually arrive at on the ground for
backscatter along the same path to the transmission point. Each ray is characterized by phase
and ground path lengths. Temporal changes in the phase path produce Doppler shifts in the
return echo. The group path gives the round trip time delay that will be assigned to a range
bin. The frequency shift in each range bin is determined from the time rate of change of the
phase path along the ray.

II. Overview of Ionospheric Bubble Models

The F-Region ionosphere can become unstable if a density perturbation becomes electrically
polarized by external forces from electric fields, neutral winds, and gravitational acceleration.
Near the geomagnetic equator, gravity can act on the plasma attached to the nearly horizontal
magnetic field lines to produce unstable conditions. After sunset when the layer is lifted by
ambient electric fields, the bottom-side steepens and plasma bubbles are formed. These
bubbles rise through the layer in response to a Rayleigh-Taylor type instability. Also, winds
or electric fields induce electric fields in both density cavities and enhancements that cause
distortions in the density structures. These distorted plasma structures are responsible for
distortion of radio propagation which lead to navigation errors and outages, communications
systems failures, radar clutter, and degradation of surveillance systems. The modeling of
ionospheric bubbles or density enhancements uses computer simulations the calculate the
effects of self generated electric fields (E) that are driven by gravity, neutral winds and
external electric fields. The equations for these simulations can be solved numerically using
(1) flux corrected transport algorithms for transport of plasma and (2) direct or iterative
solvers of the non-separable potential equations that describe the self-generated electric
fields. The computational time for solving for the disturbed ionosphere is often prohibitive
so analytic solutions to both the transport and potential equations are useful. Exact analytic
solutions can be used for (1) testing of the numerical algorithms to determine errors produced
by boundary conditions and numerical round-off and (2) time-dependent simulations of
typical electron densities used for testing tomographic reconstructions of the disturbed F-
layer and for tracing of radio ray paths through the region. The analytic solutions also yield
insight into the conditions for production of ionospheric bubbles.
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The computational and analytical techniques for simulations of equatorial bubbles are
compared in Figure 1. Usually numerical models proceed as illustrated by the block diagram
given in Figure 1 a. A stratified model of the F-layer is perturbed by a small density
disturbance. Gravity is allowed to setup an electric potential in this plasma. The electric
potential is obtained with a numerical solution of a non-separable elliptic equation using a
direct solver such as described in Appendix A. Once the electric potential is obtained, the
plasma is transported in response to the electric fields for a small time step. A non-
dissipative flux corrected transport algorithm (Zalesak, Ossakow and Chaturvedi, 1982) is
then used to incrementally move the plasma disturbance. The process is repeated with the
generation of a revised electric potential followed by more incremental plasma transport. All
of these processes are numerically intensive and can require several hours of computation.

(a) Numerical Approach
Time Advance

Ionospheric
Layer Disturbed Elliptic 2-D Eulerian

Equatorial Potential Incompressible
Bottom-side / Ionosphere Equation Transport

Density 1umerical Direct NumericaI I-UI
Perturbation Solver

(b) Quasi Analytic Approach
Analytic Solution

Analytic Elli ptic Parameterized
Potential Potential Bubble
Function Equation Function

Quasi-Analytic ODE Solver Parameter Self-Consistent

2-D Lagrangian Coordinate Normalization Bubble Solution
Incompressible Compression

Transport and Mapping Ionospheric

T Time.Advance Bubble

Ionospheric

Figure 1. Block diagram of(a) numerical and (b) quasi-analytic algorithms for ionospheric
bubble modeling. Both approaches use an equivalent set of equations but apply different
solution techniques and different frames of reference.
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The quasi-analytic model for the equatorial bubble is derived using the three steps in Figure
lb. This model is computationally faster than the fully numerical model and is more suitable
for raytrace analysis. The components of the model are described separately. First the
electric potential is defined by an analytic function and self-consistent expressions for
electron density (or Pedersen conductivity) structures are obtained in the presence of electric
fields, neutral winds and gravity. Second, the plasma transport is determined using
incompressible motion from the induced electric fields. The plasma transport is derived with
the analytic electric potential distorting the coordinates without changing the density in each
coordinate cell. To realistically model ionospheric bubbles, the effects of neutral winds as
well as gravity must be included. The polarization of the layer by a neutral tilts the
ionospheric plume from the vertical. The third step is to adjust the parameters in the analytic
models until the analytic solution given in step 1 matches the quasi-analytic results from step
2. The details of the electric potential and the plasma transport processes are described
Sections III and IV, respectively. Introducing tilts and bifurcations in the model bubbles is
described in Section V and, finally, Section VI describes normalization of the model to yield
realistic time and spatial scales. Finally in Section VII, the propagation theory for
determining Doppler shifts from ionospheric motion is described. A simple example for the
velocity shifts from a rising ionosphere is used to test the model. Future work will use the
computer models derived here to simulate the spread of the OTH radar clutter signals by both
vertical and horizontal motion of bubbles in the equatorial ionosphere.

III. Analytic Models for the Electric Potential in a Disturbed Ionosphere

The equatorial ionosphere is commonly thought of as a uniform layer with the occasional
imbedded structure or bubble. The modeling of ionospheric bubbles uses computer
simulations that calculate the effects of self generated electric fields (E) that are driven by
gravity, neutral winds and external electric fields. The equations for these simulations can be
found in a number of papers including Bernhardt [1988]. For the analytic solutions
considered here, the background ionosphere will be uniform in the horizontal, x- and z-
directions. The ambient magnetic field, B, is aligned with the z-axis. The altitude variations
of the undisturbed ionosphere will be represented by the function n0(y) where y is the
vertical coordinate.

The layer becomes distorted when a small perturbation grows as electric fields provide
incompressible perpendicular motion at F-region altitudes. These internal electric fields
move plasma across magnetic field lines with the velocity

ExB V_ xBv - =BB (1)B00

where v is the velocity perpendicular to the ambient magnetic field B and the electric field
E = -V( can be represented as the gradient of a scalar electrostatic potential (D. Other
perpendicular components of velocity driven by pressure gradients, neutral winds, and
gravity can be neglected because the plasma in the F-region ionosphere is magnetized. This
means that the electron and ion gyro frequencies are much larger than the corresponding
collision frequencies with the background neutral gas.
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An analytic approach is derived to solve for the electric potential for localized electron
density perturbations driven by external vector fields. Kelley [1989] gives the electric
current in the F-region as

J =[E + Eo+(U +g)xB] (2)
Vin

where = is the Pedersen conductivity, ne(x, y, z) is the electron density, Vin is the
B0 f1 i

ion neutral collisions frequency, E0 is the external electric field perpendicular to B,
U=Uxi+ Uy gives the normal components of the neutral wind vector, g =-g 0 Y is the

gravitational acceleration, and B = B0i is the magnetic field vector. Assume that the normal

electric fields are constant along the magnetic field in the z-direction and that there is no z-
component of current J. For specific gravitational accelerations, neutral winds and external
electric fields, the potential equation is found from (2) using

a *z vi.J=O (3)

Substitution of (2) into (3) and integration along the z-direction leaves an equation for the
potential in the perpendicular (1) x- and y- directions.

V±.Y PVI(I) = Ipv12 (D + V±•. V±7P = VI *[E0 + (U + --L) x B] cpdz (4)
Vin

where Ip = fJypdz is the field-line-integrated Pedersen conductivity and E = -V-Lc is the

induced electric field. For simplicity, the driving fields E0 , U, and-L- are assumed constant
Vin

in space and time, then the potential equation simplifies to

V.L2 (D = {[E 0 + (U + -L) x B] - V.(ID} • V.L ln(Yp) = {ET - V1 (} • V, ln(-P. ) (5)
yin

where the equivalent electric field vector defined by ET= E0 + (U +-L ) x B. Given a
Vin

spatial distribution for the Pedersen conductivity (or electron density), the potential is usually
obtained numerically from the non-separable elliptic equation (5). Often iterative solvers
requiring relatively long solution times or direct solvers requiring large memories are
required to compute this solution.

A computational alternate approach assumes that the potential is given and (5) is used to find
the associated electron density. For this solution, only Pedersen currents in the horizontal, x-
direction will be considered so
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[E0x + (Uy -- g°)Bo] x = ETJ (6)
Vi.Vm

where ETx represents the equivalent driving fields from a static electric field in the positive x-
direction, a neutral wind in the positive y-direction and gravitational acceleration along the
positive y-axis. The sign of ETx is negative for the downward acceleration of gravity. In our
notation, the growth rate for the Rayleigh-Taylor instability is y' = (-En /Bo)/LN where LN is
the scale length of the gradient on the bottom side of the ionosphere [Zalesak, Ossakow, and
Chaturvedi, 1982; Sultan, 1996].

In normalized Cartesian coordinates, (4) becomes

+2D DLog(lP) D4$ 2 a[Log(p) aj) Log() -0 (7)

where often gravitational forcing is the sole contribution to ETx, (i- (D is the
ETx r0

dimensionless, normalized potential, (5, ) Y) are the normalized coordinates, and r0kr0 r0o
is a constant scale factor for all distances. Note that (7) has many self-similar elements.

Multiplying the 5i - and . - coordinates as well as D by a constant scale factor (i.e., ro) does
not change the equation. Multiplying Ip by a constant Co also yields a solution.
Consequently, if 4D(R,.Y) and Fp(F,( ) satisfies (7) then so do the pairs of functions

r0 b(-, Y) and Co Fp(-X,-). Normalized coordinates (i, Y) will be used to simplify the
r0 r0  r0 r0

notation for the analytic solutions.

The existence of analytic solutions for (7) was discovered by examining numerical solutions.
A numerical algorithm for non-separable elliptic equations similar to (7) was written using a
block tri-diagonal solver of the algebraic equation derived from finite difference
approximations to the partial derivatives (Appendix A). When a circularly symmetric

function, Ip(i) where i = V/T +y 2 , was used for the Pedersen conductivity it was found
that the integral of the resulting electric potential along K was also circularly symmetric. In
mathematical terms,

Ip(i) => f(D(iS)d di = F, (F) (8)

This immediately shows that the form of the potential is the 5i coordinate multiplied by a
circularly symmetric function since
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F()_ =F,() ) - F (i) R (9)¢(•,- 2

Functions of single variables such as f can be solved analytically.

General analytic solutions to (7) can be derived by making simplifying assumptions about the
form of CD and Log(,p). Numerical simulations for symmetric perturbations in x with x-
directed fields given by (6) yield electric potentials that are odd functions of x with the form

= (ao +a, R) G[q(k,•)] (10)

where ao and a, are constants, q(R, )= +s . 2 is a single variable representing an
elliptical perturbation for the potential and "s" determines the polarization of the coordinate
ellipse.

The Pedersen conductivity (or electron density) takes the form of an elliptically shaped
perturbation modulating the background conductivity.

Log[E•s (R, .)] = Lp [q(5, .), s] + log[ipO (.)] (11)

where Lp(q,s) is the natural log of the conductivity/density perturbation
and p(.)= e• , r0 d2 is the integrated conductivity associated with the

horizontally stratified plasma layer. The last term of the left side of (7) is x-direction
gradient of the log-Pedersen conductivity which drives the solution for the potential.
Consequently, the R variation through the function q is required to obtain useful solutions for
the potential.

Substitution of (10) and (11) into (7) and solving for the derivative of Lp(q) yields the
equation

q2G,(q){ 2a _s+slog[O (.Y)]} +q3G (q) + .2 (s - 1)s[qG,(q) -G(q)]

Lp (q,s) a° +aax Sq2 [a1 G(q)-I]3R a+a 1  + q3 G(q) + y2 (s- 1)sqG'(q)]
ao + a•x

(12)

where the prime (') denotes the derivative with respect to q. If the functions of Y vanish,

(12) may be integrated directly. The y2 terms vanish only if s = 0, or 1.
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General solutions for an extended vertical plume imposed on a horizontally stratified
ionosphere are considered first. For s = 0 the potential has no variations in the altitude
coordinate (j3) and the solutions for (10) and (11) are given by

q=IR
&o) (R , (a + aNR) G(q)

L' (q,0) 2al R G'(c) + q (a + a1I)G'(Gq) (13)P R [ a, G(q) -1] +q (ao + aR') G'(q)

(x[- r2 a , RG'(cq)+q(a 0 +aR)G"(q).1P.• (x, Y•) =CoY-p0 (,•) exp - J R [a , G(q) - I1] + q (a 0 + a, I ) GtJ qc

where Co is a constant chosen to give the background conductivity as R-- oo. Exact
solutions for pairs of Pedersen conductivity and electric potentials from (13) are easily found.
Table I gives several examples these pairs.

Table I. Electron Density Disturbances and Companion 1-D Potential Functions

Pedersen Conductivity Function, V 0) (R, 5)) Electric Potential, D(R, 5)
EP0(y) exp(b R

2) (a0 + a, R) exp(-b x 2)

exp(bk 2 )+2b (ao +a, k)R-a,

E po() (1+I Ib1)2 al x
(1+1• b)2 + al(b- 1) 1x -a, +•I

Y p0 (&) 2 cosh[b k]2  (a0 +a, R) sech[b R]

1-2a~cosh[bk]+cosh[2bk]+2b(ao+a 1a)sinh[bk]

Pedersen Conductivity Normalized Potential

(a) (b0

0.75

Fiur0.5 OeDmesoa Peere codciiyascae0ih h nltceeti

0.25 u -0.2 a-0 1- y --
-4-2 -2 0 4-2 -20

X 2 -4 X 2 -4

Figure 2. One-Dimensional Pedersen conductivity associated with the 1-D analytic electric
potential using the parameters al,= -0.5 and b = 3. The topology of the solution remains

unaffected by the choice of model parameters.
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An example of the second function in Table I is illustrated in Figure 2 with the parameters a,
= -0.5 and b = 3. The conductivity trough (Figure 2a) centered along the y-axis has a ridges
that increase in amplitude as the parameter "a," is increased. If a, > 0, the trough is replaced
by a Pedersen conductivity enhancement as the sense of the potential (Figure 2b) is reversed.
The parameter "b" simultaneously controls the steepness of the walls on the conductivity
irregularity and the spatial decay of the potential function. With separation of variables, even
more general solutions to (7) can be found in Cartesian coordinates (Appendix B).

General Solutions for Circular Holes in an Ionosphere with simple vertical structure is
considered next. For s =1 the density disturbance is circularly symmetric with radius r
around the (F, ý) origin. The solutions from (12) require ao = 0 and a, = 1 with the result

r=' (x, i. G[+y (14)

{3+ .alog[l° (Y)]-} G(-) + i G-(-)
L•(?,I) =3+

P ~G(-r + i G'(r-) - I

To eliminate any dependence on of . in (14), the background Pederson conductivity takes
the functional form

lpO(Y) = C0o m where m and Co are a constants. With this substitution, (14) becomes

L'(?,1) = -(3 + m)G'(-) + i G'(-) (15)P ~G(-r) + i G'(-) - 1

which is identical to (13) with ao = 0, a, 1 and m = -1. The corresponding formula for the
spatial variation of Pedersen conductivity is

(1) • .m [ 1"( + m) G'(r-) + r G-(-r)d?
D (,R )=C 0 ým exp - G r+ r ) ] (16)

In Appendix C using separation of variables, all of the solutions for (7) in cylindrical
geometry are derived.

The one-dimensional (s=0) and two-dimensional, circularly-symmetric (s=l) expressions are
similar. With a0 = 0 and a, = 1, the rational polynomial function of the form

a
G(q) a b used in (10), and the corresponding potentials from (13) and (14) are

!+ q9

9



lD (0) (17a)

and CV)(K,)1 + ( a2 + 2)b/2 (17b)

where a and b are constants. Analytic solutions can be obtained from (13) through (16).

Derivatives of the density perturbations become

L'(q,O) = ab qb-l[1 +b+(1-b)qb] where q 151 (18a)
(1+ qb)[a-a(b-1)qb -- (1 +qb) 2]

Sabb-, [2 + b + m + (2 - b +m)b]where V (L'(i, 1) = hr 2(1b

(1 + ?b)[a-a(b-1)?b -(1+?b)2]

The corresponding Pederson conductivity expressions are

1o(0,) ý ) =Y (1÷Ixlb) 2

= P0 y 1-a- BIIIb+Ii1 2b (19a)

exp a(1 +m) [2tan- 2 rB,- b 1}C°l0 m (+b)2 (19b)
Al L A? + i (9

where A, = -a[4b + a(b -1) 2 ] and B, = -a(b - 1) - 2 and i x 2  . The constants of

integration are chosen to yield the background density at large distances where x --4 -o. The
physically acceptable solutions have b > 0.

Two types of conductivity structures, cavities and enhancements, are described by (19a and
- 4b

19b). In the parameter range b -41)2- aMi > a > 0, the plasma structure is a cavity centered

at x = 0. These limits are found by solving for A, = 0. As parameter "a" approaches the
value of "amin" the sides of the density cavity becomes steeper. With a = amin, the wall of the

I

cavity is located at radius is F = .b+ For b > m + 2, the cavity has a ridge located at

,= (b+m+2_ b

kb-m-2) "

With 0 > a > 1, a conductivity enhancement is found at the origin. This enhancement can
represent the increased Pedersen conductivity produced by an artificial ion cloud from
Barium or similar material released in the sunlit ionosphere. As a -+ 1, the sides of the
density enhancement become steeper. Solutions exist for all values of b > 0 but if b > 1, the
potential vanishes at large distances. If a > 1, then the solutions in (19a and 19b) become
complex and are not physically possible. The maximum upward velocity for the potential

10



C in (17b) is • = I(x, y, t) _ a ETx . If a > 1, then the conductivity would
(B Nx B0

move with a velocity larger than the ETx/BO velocity of the driving force, which is not
possible. For instance if only a vertical wind Uy is considered in the equation (6) for ED,
then the upward velocity is VyO = a Uy. An unreasonable value of a > 1 would permit the
conductivity enhancement to rise faster than the neutral wind driver.

The restrictions on the ranges for the potential amplitude "a" indicate that not all electric
potentials correspond to a physical density or Pedersen conductivity structure. For a given
force on the plasma from external electric fields, neutral winds or gravity, the induced
potential is determined by the gradients on the wall of density cavity or enhancement. These
gradients are physically limited by infinite steepness and the amplitude of the potential is a
maximum at this limit. Thus, for the solution to (4), a given physical density structure will
always correspond to a potential function. The magnitude of a potential function can be
increased to the point that there is no corresponding plasma density function.

The one dimensional expression (19a) can represent a horizontal density modulation that
uniformly changes the background density of a stratified ionosphere. These may be
produced by horizontally traveling acoustic-gravity waves can act as seeds for equatorial
bubbles. The elongated shapes of these modulations are illustrated by the example in Figure
2. The elongations can be found in nature as the extensions of an ionospheric plume below
its top. The horizontal electric field vectors calculated as gradients of the potential yield
vertical plasma transport. This transport is normal to the density gradients and, consequently,
no net change in the densities is produced. The electric fields near the top of the bubble are
the primary drivers for plasma transport.

The two-dimensional solutions to the potential equation are more useful than the one-
dimensional solutions. The expression for Y4,' /R, .') in (19b) describes a plasma disturbance

with two-dimensional structure. The conductivity (or electron density) vanishes in
YQ) (R, 5) at y=0 unless m=0. Figure 3 illustrates three examples of the analytic density

cavities and the associated electric potential for a uniform background using m = 0. By
changing the parameters in the analytic model, a wide variety of density structures is
obtained.

The background plasma variation can be approximated using nonzero values of m. The
Pedersen conductivity from (19b) vanishes at the 5 0 boundary if m > 0. With Xp = 0 at

the lower 5--0 boundary, the potential equation (7) reduces to alp a = 0. To satisfy this

condition, a/•)y =0 because vertical gradient Ap/a is nonzero-positive at the lower

boundary. This condition is automatically built into the analytic expression for the electric

potential because of the 52 symmetry of FD(i,.) = R G( / 2 + '2)
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Pedersen Conductivity Normalized Potential
a = -5.92

(a) b = 2

a,5 0
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Figure 3. Analytic results for density cavities and enhancements in a uniform background
(i.e., m=O). The densities and potentials are computed using (a) b = 2, a= 0.99 aMi, = -
5.92, and (b) b =89, a = 0. 5 aMin = -0. 48, (c) b = 4, a = 0. 5. The changes in the parameters
yield either (a) a cavity with steep sides, (b) a ridge around the cavity or (c) a peaked
enhancement.
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Two quantitatively different ionospheres can become polarized with the same potential
variation. Figure 4 illustrates two solutions of (19b) with identical parameters for a and b but
with (a) m = 1 for a linear background profile, and (b) m = 0.25 for a forth-root of y profile.
As seen by the solutions in (19a and 19b), a family of Pedersen conductivity structures can
be associated with a single electric potential (or field) distribution. This non-uniqueness
property can be exploited for modeling the evolution of the density structures

Pedersen Conductivity Normalized Potential

a = -1.78
b=4

(a) M= 1

6! a5

1 .S

-4 0

-2 6y 0.
004

4

a = -1.78
b=4

(b) m 1/

(b) 1/4

1 1m04

Figure 4. Density cavities imbedded in a linear and inverse-quartic variation for the vertical
profile of the plasma conductivity. Both structures yield the same electric potential. The
conductivity and the y-directed electric field goes to zero a the lower boundary.

13



One use of the analytic solutions to the potential equation (7) is to provide test cases for the
numerical solutions of the same equation. Numerical solutions are influenced by (1) the
finite difference approximations to the derivatives, (2) the boundary conditions, and (3) the
convergence error for iterative solvers. A direct numerical solver was used to solve for the
potential (Appendix A). The Pedersen conductivity was specified using the second, two-
dimensional analytic model in (19) with the parameters a = -0.53, b = 4, and m = 1. The

analytic potential &) (F, ý) = xa from (17b) is compared in Figure 5 with the
1 + (RI + ý2)b/2

numerical solutions for the potential with a variety of boundary conditions.

For uniform boundary densities as illustrated in Figure 3, doubly periodic, doubly fixed (or
Dirichlet) [with the boundary potential set to C = 0 ], or doubly derivative (or Neumann)
[with D•D/?- = 0 and DID/1 = 0 normal to each boundary] specifications work well. The
non-uniformities for the Pedersen conductivities at the boundaries in Figures 4 and 5 require
care in the selection of the boundary conditions for numerical solutions. The Pedersen
conductivity and corresponding analytic potential are shown in Figures 5a and 5b,
respectively. As illustrated by Figures 5c and 5d, inaccurate solutions are obtained for the
potential with boundaries specified as doubly periodic and doubly fixed/Dirichlet (,6 = 0),
respectively. These two boundary conditions force equal potentials at the top and bottom
where the real densities are different. Neumann (i.e., zero derivative) boundary conditions
yield a useful solution (Figure 5e). Another accurate solution is obtained by using a
Neumann (i.e., zero derivative) boundary at the bottom, a Dirichlet (i.e., zero potential)
boundary at the top and periodic boundaries at the sides of the solution space (Figure 5f).
Table II lists the maximum potential for each solution using a 64 x 32 grid. All of the
numerical solutions with the correct shape (Figures 4e and 4f) yield a computed potential that
is about 11 % less than the actual values. This reduction is the result of the finite difference
approximations for the derivatives in (7).

As the number of mesh points is increased, the numerical solution becomes more accurate.
Table III shows the effect of the grid size on the maxima of the computed potentials. The
numerical solutions use an nx by ny grid in the K - and Y-directions, respectively. In all
cases, the doubly derivative or Neumann boundaries yield slightly better solutions than the
mixed boundary solution with doubly periodic in the R -direction and Neumann/Dirichlet
(derivative/fixed) boundary values in the .- direction. These examples illustrate that the
analytic solution pair (17b) and (19b) provides an easy way for testing (1) the utility of the
numerical solutions with various boundary conditions and mesh sizes and (2) that the error in
the numerical solution vanishes as the grid becomes denser.
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Figure 5. Comparison of analytic and numerical solutions for the electric potential with a

density cavity at the bottom side of the stratified plasma. The potential is set up with either

downward gravity and winds or horizontal background electric fields. The magnetic field is
in the z-direction perpendicular to the horizontal x-axis and vertical y-axis. Analytic
solutions for (a) the normalized Pedersen conductivity and (b) the normalized analytic
potential are compared to the numerical solutions for the potential with (c) x-periodic and y-
periodic boundaries, (d) x-fixed/Dirichlet and y-fixed/Dirichlet boundaries, (3) x-
derivative/Neumann and y-derivative/Neumann boundaries, 69 x- derivative/Neumann at
bottom, x-fixed/Dirichlet at top and y-periodic boundaries. The latter two boundary
conditions yield numerical solutions that approximate the analytic model.
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The analytic solutions provide a quantitative test of numerical algorithms for the non-
separable PDE's that describe electric potentials in the ionosphere. All numerical solvers use
the approximations of (1) finitely spaced solution samples (2) boundaries at finite distances.
The analytic solution provides infinite spatial resolution with no boundary limits. Test cases
can be set up to show the effects on the numerical solutions of boundary placement and
boundary types as well as discrete sampling of the coordinate system.

Table 11. Error Analysis for Numerically Derived Potentials

Solution x-Boundary y-Boundary Maximum Maximum Shape Fig. 3
Condition Condition Potential Error Panel

Analytic .... 0.304 0 Correct b
Numerical Periodic Periodic 1.167 0.863 Incorrect c
Numerical Fixed Fixed 0.154 0.150 Incorrect d
Numerical aC/0x = 0 D&/Dy = 0 0.273 0.031 Correct e

Numerical adi/ax = 0 adD/dJy = 0/Fixed 0.271 0.033 Correct --

Numerical Fixed aD/Oy = 0/Fixed 0.269 0.035 Correct --

Numerical Periodic aiD/oy = 0/Fixed 0.269 0.035 Correct f

Table III. Mesh Size Affects on Numerically Derived Potentials

Number of Cells Number of Cells Maximum Potential (% Error)
in R -Direction: in . -Direction: Derivative Mixed

nx ny Boundaries Boundaries

32 15 0.238 (22 %) 0.236 (22 %)
64 32 0.273 (10 %) 0.269 (12 %)
128 64 0.292 (4 %) 0.286 (6 %)
256 128 0.301 (1%) 0.296 (3 %)

In summary, exact analytic solutions have been found for the nonlinear potential equation
commonly used for determination of electric fields for ionospheric plasma irregularities.
These solutions provide easy means to calculate the distributions of plasma conductivity
associated with analytic models for the electric potential. These solutions can represent
plasma depletions or enhancements depending on the model parameters. The analytic
examples demonstrate that a large family of density structures can correspond to identical
electric potentials. Also, if the amplitude of a potential is too large, there will not be any
corresponding electron density structure. One use of the analytic solutions is to test
numerical techniques to solve for the electric potential associated with arbitrary distributions
of electron density under the influence of gravity, winds, and ambient electric fields. The
next step to complete the quasi-analytic bubble model is to use the exact forms of the electric
potential derived in this section to provide transport of the plasma structures. This is
described in the next section.
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IV. Quasi-Analytic Solutions for Plasma Transport in a Disturbed Ionosphere

Plasma densities evolve by transport, compression, production and loss. These processes are
contained in the continuity equation

-+ V.(nv) = P - L (20)
at

where n is density, P is production and L is loss. Numerical or analytic solutions to (20) can
be based on either the Eulerian or the Lagrangean form of the equations [Richtmyer and
Morton, 1967]. These forms are equivalent except the Lagrangean form describes where
each bit of fluid cam from originally. Equation (20) is the Eulerian from of the equation of
continuity. The Lagrangean from is derived for the special case of incompressible flow.

The compressibility of a plasma is given by the term V. v. When this term is zero, the
plasma is termed incompressible. Using (1) the compressibility of the F-region plasma is
found to vanish because

VV = -V. (VI) x B)13 0
2 =[-B.(VxVD)+VO.(VxB)]iB2 =0 (21)

where a constant B is assumed.

Expanding (20) with (21) yields the compressionless form of the continuity equation

a~n (a Dn-+ v .Vn = •.+v.V n = P-L (22)(0t Dt

where Dn/Dt is called the total derivative. The total derivative of the density moves with a
small volume element (Ax, Ay, Az) in the velocity field. During this process a plasma
element at (x, y, z) is mapped to another location (x', y', z') in an increment of time At. The
incremental mapping equation is given by

x = x + v(x)At (23)

where the vectors have components x = (x, y, z) and v = (vx, vy, vz). The derivative form of
(23) simplifies (22) so that

dn(x, t) =
dt ) (xt)-L(xt) (24)

dx v(x,t)
dt
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If production and loss are neglected, then the electric fields simply move volume elements of
plasma in space but the density in each element remains unchanged. Equations (24) are the
Lagrangean form of the continuity equation.

An analytic formulation is developed to describe the equatorial bubbles in terms of a
mapping function that distorts the ionospheric layer according to the second equation in (24).
The mapping function is usually determined with a numerical simulation that calculates the
electrostatic E fields as a function of time and space as an ionospheric bubble or irregularity
is formed in the F-layer. Substitution of these fields into (1) yields the transport velocities
and the second equation in (24) can be solved to provide the motion of the density
coordinates. The transformation of coordinates by this process is given by

x(t) = M[x(t0 ), t - to ] and x(t0 ) = M-'[x(t), t- to] (25)

and, neglecting production and loss, the electron densities are given by

n(x, t) = n(M-[x, t- to ], t0 ) (26)

where the map M' transforms the distorted coordinates back to the initial coordinate
locations.

Taking the magnetic field to be aligned with the z-direction, the electron density fluctuations
are assumed to vary in the 2-dimensional coordinate system (x, y). The coordinate transform
map is given as

x(t)I [M.(x0,Yot-to) 
(27)y(t). = MY (xo, Y o, t- to)]

where y is altitude, x is zonal distance in a flat earth system and (xo, yo) are the initial values
for these coordinates at time to.

The mapping function M(x, y, t) must be one-to-one and invertible and be the identity map
where the induced electric potential is zero and the plasma densities are unchanged.
Substitution of(l) into (24) yields

dx(t) VDxB (28)
dt B(

Assuming uniformity along B in the z-direction, the differential equations governing the
coordinated transformations are

ax(xoyoqt)_ I a-D(x,y, t) and dy(X' yo,yt) _ 1 a(D(x,y, t) (29)
at Bo Oly at Bo ax
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Differentiating (29) by xA and yO and using the Poisson's equation

V. E = V. = ((30)

yields the equations for the velocities

t(3x/at) _ wy/at) and ___x/__ _ (__ y/_t) =-V 24) (31)
x 0 y0

The areas between curves of constant xO and yO are preserved in the transformation and the
trajectories of the coordinate transformation follow contours of constant (I(x,y). The electric
potential is setup by gravity, neutral winds and external electric fields.

Consider the coordinate transformation provided by the analytic potential from (17b) in the
previous section

(D(x, y) = (x/ro) ax r ETX - aX ro ETX (32)
1 + [(x/r0)2 + (Y/ro) 2]b/2 I+ b

where coordinates R and k are the Cartesian coordinates normalized by a constant scale
factor r0 and constants ax and b define the shape of the potential.

The plasma transport velocities are

R i biP•b-2

't (l- +b)2 r
d _ 1 i2 Eb-2 + 2b

Z3t (1+ ib)2

where -a E, t and = + +y2

The maximum upward velocity at the (i = 0, = 0) origin is given by Vyo- a. ETX
Bo 0

independent of the potential shape parameter "b". Note that in our example of the downward
gravity vector driving the transport, the parameter ET,- from (6) is less than zero and a value
of a. < 0 is required to yield an upward velocity. The parameter ax<0 denotes a density
cavity and consequently the center of the cavity is expected to rise against gravity. If the
parameter "ax" were greater than zero, the center of the density enhancement would fall as
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expected under the influence of gravity. For the rest of the discussion, only density cavities

will be considered.

The sides of a cavity fall under the influence of gravity. The minimum downward velocity of

Vy= a, ETx (b-i) 2  (b-l)2 is found at ±R=b+l and ý=O. TheCartesian

B 4b = 4b -b-l

coordinate system is distorted by the potential inside a conductivity cavity so that the center
cells move upward and the side cells move downward.

The analytic model potential with b = 4 was previously illustrated in Figure 3b. The
corresponding vector field for the plasma velocities (Figure 6a) shows the central uplift of the
plasma. As a result of this flow, after normalized time i 1 the initially square cells become
mapped according to the results shown in Figure 6b. The horizontal (red) and vertical (blue)
grid lines become distorted by the vortex flow from the potential. Note that the area in each
plasma cell remains constant during this process.

Normalized Velocity Field Distortion of Square Grid Cells

I- •. • , .• ...-. ¢t• • -• • --2 0 2 (b0

a) A A\\~ loift t'

4~

0 0. ~ ~ 4 k A

Z 4 A V ,~

-2 4  
p .v j4 -2

-2 0 2 -2 -1 0 1 2

Normalized x-Coordinate Normalized x-Coordinate

Figure 6. Computed (a) plasma velocities and (b) mapping of Cartesian coordinates by the
analytic model for the electric potential shown in Figure 3b. The longest velocity vector has

a magnitude aE and the spatial coordinates are normalized by the scale length ro. The
B

coordinate map is illustrated after the flow velocities flow have operated on the plasma for

time t = (a E or when normalized time t =1..B roJ

The primary feature of ionospheric bubbles is that they rise leaving an elongated cavity of
reduced plasma density often referred to as a "plume". As the plume rises, it carries the
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along electric potential. Using the upward velocity for the potential in (32) ofVyo - a. E'
B0

the analytic model for the potential becomes

O(x,y, t) = D(x,y- VYOt,O) = xaETX / (34)

1+ y - 01 [(rxo2 + rYO_ Vryot]2f

+ ro ro rJ )
With this potential formula, the plasma drift velocities are found from (29) to be

b-2

-b [2 +(.t-)2] 2

tl + k t)2- -2(35)
S_1+[l- )E2 + t)2 2][ji2 +(y -)2]b2

where the time has been normalized by t = t Vyo/r 0 and [i(O), Y(O)] = [x0,Y] are the initial

conditions at time i t0 = 0. This equation is the base for the quasi-analytic transport for
production of ionospheric bubbles. By using this equation, it is assumed that the electric
potential shape is totally specified with fixed parameters ETx, a, b, and r0. The only temporal
variation of the potential is that it rises with a constant speed given by

VYo = ax ETx
B0

The potential in the trailing portion of the plume is neglected because any vertical flow
below the bubble only operates on horizontal gradients and, consequently, there is no net
plasma transport within this region.

In the reference frame of the rising potential, ý,- a and the differential equations

become
b-2 b-2

0•.b [ P ••] 2P -1 + l[(Il-b) P] +2[ 2+.2--(6

x yp b and -- =-I+ (36)

{l+[ P 2 + }1
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The coordinate transformation if found by integrating (36) for (i, YP) with an initial value of

(x0,90) and then finding ý = 9, -t . Further simplification is obtained by transforming to

spherical coordinates where R = ?p CosOp and Ya = ?p Sin 0O . With this substitution, (36)
becomes

-ip _ ' sin 0p
P$ 1 (37)

0o_ f- cos0p(l+b+?p')

--(i+?pb)2 where the initial conditions at 1=0 are fp(0) •= +9• and

0r(0) = tan-'(ýo/Io)

The coordinate transform starts with an electric potential at altitude to = 0 and lets this

potential distort the coordinates until time t1 when the potential is at altitude 9 = 1,. The
starting and stopping times and altitudes are critical in defining the coordinate distortions.
For describing equatorial bubbles, these starting altitude must be transformed to the location
where the bubbles starts to form on the bottom side of the ionosphere and the stopping
altitude yields with the location of the bubble at time t, = r r0/V•. This renormalization is

described later.

The properties of this coordinate transform can be examined at the center where i = 0 and
(35) simplifies to

-= 0 with R(0) = R(t) = 0

___ 1 bwith 9(O) = Yo (38)
T't 1 + [(_T)2]-2

The solutions of (38) are found from the nonlinear equation

9Sign(o) + 19- itI i-b =I+ 1-b
1-b 1-b

The limiting forms for the asymptotic solutions to (39) are
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g g for 0• go and t <ygo
g= forgo =0(40)

g ( -I 1/ for I< goandi y0

yt + [(b _ 1)(t -0 + glbIbfor 0 < go and < go
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Figure 7. Mapping of the (a) y-axis and (b) a square coordinate grid with a rising potential
that starts at the origin. Using equation (34) with b =4, the coordinates above the initial
center of the potential are swept into a narrow band that rises with the upward bubble
velocity. The snapshot at t=6 shows transport of the ionosphere upward at the center and
downward at the sides.
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This maps of the coordinate distortions are illustrated in Figure 7 using the potential with
index b = 4. The temporal variations in the normalized altitude are given in Figure 7a. The
spatial mapping of the grid at time i = 6 is shown in Figure 7b. The ionosphere is nearly
undisturbed below the starting altitude (Y =0) of the rising electric potential. The

ionosphere is also undisturbed for times (t < .Y ) when the potential is below the undisturbed

ionosphere. As the potential rises, it sweeps up all the coordinates and carries them in a
narrow layer at just above the center of the potential function where ý = t. This type of

coordinate transformation can be used to simulate the rising equatorial bubble. At time 11 the

potential rises to be centered at an altitude • = t1.

(.-
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0)0.2

0 5 10 15 20

Initial Coordinate, YO

Figure 8. Coordinate compression at the top of the plasma bubble. For the potential
parameters b = 4, the normalized i -coordinates are mapped to a thin shell about 0.4 to 0.45

above the center of the rising potential function located at j = t.

The horizontal coordinates near the center of the rising potential map to a thin shell centered
at the altitude .• = 1. An approximation to this map is given by the last equation in (22). The
evolution of this coordinate "compression" is illustrated in Figure 8 for normalized times
between i = 1 and 20 using the parameter b=4 for the electric potential. The offset (Y - t )
from the center of the rising bubble increases monotonically but slowly as the initial
coordinate covers a much larger range.
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The normalized density gradient at the edge of the bubble is an---n= ne 0 so i is the

coordinate compression factor. Analytically, this factor is given by

,g S-(41)
9 1+gb

This factor is plotted in Figure 9 with b = 4 for a wide range of times and initial coordinate
altitudes. The compression factor increase with time easily attaining values greater than 10
or 100. With this compression, a bottomside ionospheric gradient becomes greatly amplified
as the bubble rises.
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Figure 9. Density gradient enhancement factor for the coordinate compression at the top of
the rising bubble with index b = 4. The compression becomes enhanced with increases in the
normalized time t. Outside the effect of the potential this factor is unity. This processes
yields the steepened gradients at the sides of the ionospheric bubble.

25



To obtain the electron density or Pedersen conductivity at time (i), cell coordinates must be
obtained for the original cell that was transported to the current position. The model
ionospheric bubble is therefore formed by operating on a horizontally stratified layer with the
inverse of the coordinate transformation defined by (35). This inverse may be obtained with
by (1) interpolation of the solution to (35) or (2) by reversing time for the solution of (35).
Figure 7 shows the location of the coordinates at the current time for each normalized

starting position (R0, 0)= (0,0 j The interpolation process is hampered by the

distortion of the coordinate density cells. In the mapping shown by Figure 7b, the square cell
with comers at (F.0, .o) = (0, 2), (0.1,2), (0.1, 2.1), and (0, 2.1) are mapped to the elongated

region with comers (0, 6.421), (0.1075,4.374), (0.1112, 4.443), (0, 6.424) at t = 6. With
linear interpolation, the point (R, g) = (0.055, 5.4) inside the elongated region is determined

to map to the initial position (x0, .o) = {0.0505, 2.0364). This is in error; the correct

location for this position is (x0, .o) = (0.3329, -0.1784). Beside being prone to error, this
technique requires interpolation on a non-uniform mesh or numerical solution for the inverse
of interpolation on an a uniformly spaced mesh of the coordinate locations at time t = 0. For
good accuracy and ease of computation, interpolation or numerical inverse solutions should
be avoided.

Since the electric potential does not evolve with time, the inverse coordinate mapping is
easily achieved with time reversal. Consider a cell with location (xi, yj) at time t = ti.
Running time backwards to time t = 0 yields its starting point (xo, yo). If the parameters Vyo
and b are constant, the time reversal solution is most easily obtained by replacing t with -
in (35) through (37). This process yields the map represented by (26).

The equations for the inverse coordinate map are

No--• =-o (.o + 1) b_[x02 + (g0+t1)2] b-222
~] b+ 2 ^F 0 2 0 12 "2-b2( 

2

-o 1+[(i-b)xo2 + (Yo + j)2 ][2 +(Yo + T)2]2 (42)

1[o2 + (go +t1)2] 2

The center of the potential function starts at altitude 0 = t1 and then (42) solved as the center

of the potential falls to an altitude g0 = 0. For this reason, the inverse coordinate map

equations are integrated from t = -t1 to " =0. The initial conditions for (42) are

Xo(-tl) = R, and go(-t1 ) = ýj (43)
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The inverse coordinate map is illustrated in Figure 10 for the initial grid and the distorted
inverse grid at several times. This map is used to determine the origin of a coordinate cell
and the initial electron density or Pedersen conductivity in that cell. As an example of using
this inverse map, the mapping of specific point (0.055, 5.4) is directly obtained with (42) to
yield the correct initial location (0.3329, -0.1784).
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Normalized Distance,

Figure 10. Inverse coordinate map showing source regions for density gradients.

No analytic solution to (42) could be found but the numerical solution to the coupled
ordinary differential equations is fast and efficient using standard explicit methods. The
Lagrangean inverse-map is consequently called quasi-analytic because no finite-difference
approximations are applied to the spatial (x, y) coordinates but discrete steps in the time
dependent solutions of (42) is required. Applying the inverse map to any analytical model of
a uniform ionosphere can efficiently provide the density at any point in space and time that
can be obtained without the use of interpolation or the numerical solution of two-
dimensional partial differential equations.
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As an example, the inverse coordinate map is applied to an F-layer described by the
following formula for a modified Chapman layer

Ne(y) = Ne0 Exp[ 1 - z - Exp(z)]

Z y-HP (44)
H0

Ho = Hol + [0.5+Tan1( yHp)/]H2
HI

The parameters Neo, Hp, Ho, Hol, H0 2 and H1 control the shape of the layer. The analytic
simulation uses peak density Neo = 106 cm-3, peak altitude Hp = 400 km, bottom-side scale
height Ho, = 20 km, top-side scale height H0 2 = 50 km, and transition scale H, = 10 km. This
simple layer model has a steep bottomside representative of the equatorial ionosphere. The
conversion from normalized coordinates is y = ,• ro + yco where Yco is the starting altitude of

the electric potential at time t 0.
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Figure 11. Simulation of a bubble formed in the ionosphere using a simple formulation for
the electric potential. The parameters for the model are b=4, and ro = 30 kIn.
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Applying the inverse coordinate transformation (42) to the ionospheric profile yields the
bubble evolution illustrated in Figure 11. The coordinate distances are determined using a
scaling factor r0 = 30 km and the potential function rises through the layer starting at Yco =
370 km altitude. The potential function index is arbitrarily set to b = 4 for this example. The
normalized time coordinate t = t VYO/r0 = t a,, ETx/(B r0) is used because the parameter "a,

has yet to be specified. The allowable values for a were previously given after (19) as
- 4b-(b - < a < 0 . With a larger value of parameter "ax ETx", the vertical velocity of the(b - 1)2

bubble increases and the absolute time (t) in the simulation is reduced for a fixed normalized
time. Figure 11 illustrates that the analytic model using the rising potential yields a quasi-
analytic solution that resembles numerical solutions requiring much more computation time.
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Figure 12. Effect of electric potential index b on the model ionospheric bubble. The
normalized time for each solution is t = 3.75.

Whereas the parameter "ax" controls the bubble rise rate, the "b" determines the size of the
bubble. The parameter "b" may have any value greater than unity. Larger values of b yield
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electric potentials with larger gradients at the edges. Increasing b increases the region
affected by the electric potential. Figure 12 illustrates the ionospheric bubble for several
values of this index. Values of the potential index in the range 2 < b < 4 seem to yield
reasonable descriptions of the rising ionospheric bubble.

V. Bubble Tilts and Ambient Shear Flow

Both observations and numerical computations [Zalesak, Ossakow and Chaturvedi, 1982]
have demonstrated that neutral winds can tilt the ionospheric plumes off vertical. When
acted on by a zonal neutral wind Ux, a vertical electric field Ey is produce by interactions
with the background electron density (or Pedersen conductivity). Also, a perturbation
electric field ETy is produced by polarization of the plasma density bubble by the neutral
wind. These two processes work simultaneously to affect the tilt the bubbles. First, the
background neutral wind induces large scale plasma motions in the zonal, eastward direction.
The shear in this large-scale plasma drift will cause the regions of lower background
Pedersen conductivity to lag behind the regions of maximum Pedersen conductivity. Second,
polarization of the ionospheric bubbles by the neutral wind, which moves faster than the bulk
motion of the plasma, will produce horizontal motion that will cause the density depletions to
move in the opposite direction of the neutral wind relative to the bulk plasma drift. This is a
well known property of plasma holes as they respond to neutral winds [Bernhardt, 1988].
Both of these processes are easily incorporated in the quasi-analytic bubble model.

Vertical gradients in the background density yield vertical gradients in the induced electric
field and vertical shears in the horizontal plasma drifts produced by these fields. This
process is captured in (2) assuming that the vertical currents vanish with the result

Jy, =[E -UOB 0 ]oe =0 (45)

The field line is divided into the F-region where the wind is uniform and the E-region where
the neutral wind will assume to vanish [Zalesak, Ossakow and Chaturvedi, 1982]. Calling
the integrated Pedersen conductivity in these two regions IF and IE respectively, the vertical
electric field profile is given by

E U(y) 0 E (Y) - (46)Eyy) E + EF(Y) -- 'y

where (Do is the polarization potential of the background plasma.

The resulting plasma velocity is given by (24) with the result

Dx E 1____ 1__
i- Ey=U XF(y) -U =V (47)

t B- E + IF(Y) ( f(y/r0) + 1 xS
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where f(y/r0) = f(f) - -= (48)
YF (y/r0 )

This is the horizontal velocity of the plasma in which the bubble is imbedded. Usually the
wind shear variation is small compared to the average bulk motion.

In normalized coordinates, this wind shear equation for the background horizontal motion
becomes

SV.s Ux F(Y/rO) Ux 1 VS( (49)

-•-= V0 Vyo Y-E + -F(Y/rO) Vyo 1 + R()

Integration of (49) yields the simple coordinate map from this large scale plasma motion

where xo is the initial coordinate at time t = 0.
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Figure 13. Profiles from neutral atmosphere and electron density models used for the
sample computations of electric polarization that tilts the equatorial bubbles.
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Figure 14. Model profiles of field-line integrated Pedersen conductivity, uniform neutral
wind, large-scale horizontal plasma drifts, and horizontal wind relative to the drifting
plasma.

If the E-region Pedersen conductivity is zero, then the plasma will move horizontally with
the neutral wind speed U,. A finite Y-E coupled with vertical shears in the F-region Pedersen
conductivity gives a shear structure to the horizontal plasma motion. The tilts of the
equatorial plume structures will be computed using the Lagrangean approach to the plasma
transport with both imbedded potential given by (34) and the large scale distortions described
by (50).

As an example of this wind induced shear in the horizontal plasma drift, a uniform neutral
with U, = 100 m/s was used to polarized the plasma layer given by (44) with a peak density
of 10 6 cm-3 . The model neutral atmosphere and electron density profiles illustrated in Figure
13 are used to derive the equatorial profile of the field-line integrated Pedersen conductivity
shown in Figure 14. A dipole magnetic field model of the form
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B, 2 H0 CosO H0 SinO (51)= r3 and B 0- r3S
r 3r3

is used for the magnetic field lines where H0 =-0.311 10-5 Tesla. Figure 15 illustrates the
distortion of a square mesh using the coordinate transform defined by (47). Application of
this transform after the transform illustrated in Figure 7 will tilt the bubble to the left (west)
side of the simulation. The simulation for Figure 15 used a fixed E-region conductivity IE

that was one-tenth the maximum value of the F-layer Pedersen conductivity IF.
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Figure 15. Horizontal coordinate distortion by wind induced plasma shear flow after 500
seconds ofplasma motion.

The rising bubble will be caught in the sheared plasma flow to provide a tilt to the bubble.
To model this tilt, the quasi-analytic transport model will be modified assuming that the
bubble follows a trajectory that is a combination of the vertical rise velocity VyO and the
horizontal shear velocity given by (47). The equations for the trajectory of the center (xc, y.)
of the bubble is

t - and a = V5 s(y,) (52)

Assuming that the bubble starts to form at the initial location (x, y) = (0, yco), then the
solution of (52) becomes

y. =y~o+VY~t and xo = fVsx(yo0 + Vot') dt' (53)
0
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In normalized coordinates this solution for the center trajectory of the bubble becomes

.=i tand R. (s(-) dd (54)
0

where distance is normalized by r0, velocities are normalized by Vy0 and time is normalized
by rONyO as before.

The simple coordinate map (47) neglects horizontal flow from internal polarization of the
bubble. This flow is the result of vertical polarization fields generated by polarization of the
bubble structure by the neutral wind. This process has been described in Section II except
that, along with vertical gravitational acceleration, the horizontal neutral wind induces an
electric potential that causes horizontal motion of the bubble center. From (6), the vector
electric field from these forces is

S+ (U + -) x B = -ET (56)
Vin

The horizontal neutral wind in the rest frame of the plasma bubble is Ux, - VxO where Vx0 is
the horizontal velocity of the center of the bubble. The electric field associated with this
neutral wind in this frame is

ETY (U. - V,0)B0 Y (57)

by the definition in (56). In the rest frame of the plasma, the relative velocity of the electric
potential at altitude y = y,

VxR_(Y_)==EY 1 bD1  (58)

B0  B0 y

where bD is the potential from internal polarization.

The response of the plasma to this drive field is dependent on the physical structure of the
bubble. For the tilted bubble model with internal polarization, a single parameter scaling of
the ambient drifts is used. The horizontal drift velocity of the bubble center is assumed to
have the form

V,,0(y) = (I1- ay) Vxs = Vxs + VxR with VxR =- ayVxs (59)

where ay is a constant analogous to ax used in the previous section to determine the bubble

rise rate from gravity. The parameter ay determines the bubble velocity in a rest frame of the
background plasma. For density depressions, ay is less than zero.

The wind and plasma drift profiles in Figure 14 illustrate this polarization effect. Figure 14b
shows that, near the peak, the relative wind in the plasma rest frame is about 10% of the total
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plasma drift. The parameter ay controls the relative velocity of the bubble in the background
plasma. If ay = 0, the bubble drifts with the background plasma as if there were on internal
polarization of the bubble. If ay = -1, the background horizontal plasma drift adds to the
wind-induced relative motion produced by the polarization fields inside the bubble giving
V.0 = 2 Vxs and VxR = -Vxs. In normalized coordinates (59) becomes

- V
xOx = V = (I-- ay)V.s = VxS + V. (60)

Lin et al., [2005] measure relative zonal propagation of equatorial plasma bubbles that is
consistent with this internal polarization effect. Using the definition of

ay = -VR/VNs (61)

where VR is the measured bubble velocity relative to the background plasma drive Vxs , the
observations of Lin et al. [2005] yield time dependent values of ay from 1.7 at 20 magnetic
local time (MLT) to 0.3 at 22 MLT. Lin et al [2005], however, attribute this effect to strong
coupling between atmospheric gravity waves and the Rayleigh-Taylor instability. This paper
asserts that polarization potentials of the density depletions set up by the relative neutral wind
can explain the enhanced motion of the bubbles.

The technique for bubble modeling is based on the motion of the analytic electric potential
along a trajectory. The tilted bubble rises along the path defined by the velocity
V0 = V0fi + Vy0Y. With both background drift and internal plasma motion, the dynamics of

the center of the plasma bubble potential are given by

i Yt and ax_ = Vx° = (1- ay)Vxs (62)

with the initial conditions [x, (0), y, (0)] = [ 0, ye0 ]

For the tilted bubble model, the internal horizontal and vertical electric fields are considered
along with of the overall motion of the background plasma. With the internal field
assumption, the analytical potential function becomes

(ID(x, y, t) (D o(y) + (ID, (x - x., y - y.o - Vyot, 0)

[x - xJ(t)] Vyo - Y -[Yo - Vyt] VR (Yo + Vyot) (63)
+ l xx'(t)2 +(YYoVyot2]2

which is identical to (34) with DO, V,,R and x. equal to zero. The induced plasma bubble

velocity in the horizontal direction is
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V.0 -- DO- Vxs + V, (64)

at the position x = x,(t) and y = + Vyt. The added variables tilt the electric potential off

vertical so that the head of the bubble can flow against the ambient drift of the background
plasma.

The coordinate shift xp = =x-x(t) and yp =y-yo - Vyot translates the potential into the

reference frame of the bubble center with the result

.D(x,y,t) = ( 0(y) + Bo xPVy- yp VR(y + Vyt) (65)
1 + (rp/r)b(

where r = Xp+y2

The potential function given by (65) is substituted into the Lagrangean transport equations

Dx(xo, yo, t) 1 aD(x,y, t) and ay(x°'yo't) _ I DD(x, y, t) (66)
at Bo ay at Bo ax

The resulting coordinate mapping equations for the rising potential in sheared plasma flow is

axt - V.0°(Y.) = Vx° (Y.° + Vy0t)
at-

x _ b r• 2robyp[xpV0 - y, V�(Yo0 + Vyot)] + [1 + rPr~b] V+ (y+ + (y) (66)
at (I + rpb r-b)2

_= V[ oI+ r ro] b- b r 2robxp [xPVyo- yp V x (yo + Vot)]

at (I +rpb ro-b

incorporating both internal and external forces on the bubble.

In normalized coordinates, the transport equations become
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oaii b Vp-2•y[_,•R (. 1 '] 1 + 1,b] V7ýR(.90)"+ V] bS( (67)

where once again distance is normalized by r0, velocity is normalized by Vyo, and time is
normalized by ro/Vyo. The velocity functions are all related to the normalized plasma shear
by the parameter ay with Vx0 (9) /(1 - ay) = - xR (.)/ay = Q.s(Y) .

Before computing the coordinate mapping, the trajectory of the center of the potential
function (x,, yc) is found by solving the first ordinary differential equation in (66) or (67).
For this calculation and all the follow, the shear velocity shown in Figure 15 was used in (60)
with a several values of ay. Figure 16 illustrates the model results for the motion of bubble
center as a function of the parameter ay. With ay = 0 the potential will rise and drift east
reaching a maximum distance on the topside where the wind induced drift vanishes. As the
parameter ay is increased toward unity, the internal polarization of the bubble inhibits its
horizontal motion in the background plasma flow.

To illustrate the results from these coordinate-mapping equations, the parameter ay is set to
one-tenth so the potential function moves horizontally with the ambient plasma flow at each
altitude and is slightly retarded by internal polarization. When ay = 0.1, then VxR(y) =
Vxs/10, VxO = 9 Vxs/10. The initial conditions for the coordinate map are
[Jo(0), R(0), Y(0)] = [0, R0,90] at t = 0. All of the results are displayed in normalized

coordinates. The normalization parameters r0 = 30 km, and vy0 = 100 m/s can be used to
translate the solutions back to physical space. The bubble moves with the vertical rise
velocity from internal electric fields set up by gravity. By setting the internal polarization
parameter ay nearly to zero, the horizontal motion is primarily with the background plasma
but there is a small retardation from the internal fields. The shear function was put into
normalized form from the physics coordinates using the defmnition , = (y -y.0)/r0 where yco =
370 km. With the parameter b = 4, the ordinary differential equations given in (67) are
integrated in time to yield the quasi-analytic solutions for the Lagrangean coordinate
distortions shown in Figure 17. The center of the potential function as derived from the first
equation in (67) is shown by the green curve in each figure. The plume structure below the
top of the bubble becomes caught up in the ambient flow to from a backwards "C". The
successive images in Figure 17 are normalized shown for normalized times of 2, 4, and 6.
Using the normalization factor r0/yO = 300 seconds, the absolute times for the tilted bubble
coordinate maps are (a) 600, (b) 1200, and (c) 1800 seconds.
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Figure 16. Curves of the trajectory for the analytic potential function used to create the
equatorial bubble. With parameter ay = 0, the internal polarization of the bubble is
neglected and the potential function is transported by the full action of the plasma shear. As
ay is increased, the zonal motion of the center of the bubble potential is reduced. With ay =
1, the internal polarization at the head of the bubble completely cancels the plasma drift of
the ambient layer.
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Figure 17 Coordinate map for distortions from a rising (b 4) bubble in a sheared
background plasma flow. The green line shows the trajectory of the center of the bubble with

ay0.1. The plume becomes curved as it is caught in the ambient plasma flow.

The coordinate transform equations in (67) yield the normalized, destination coordinates
[R(t), ý(!7)] from the given initial coordinates [RO, ýO . To deter-mine a mapped density at a
given location, the time-inverse transformation to determine the initial coordinates for a
coordinate cell that is transported to a given location. This inverse transform has already
been discussed in the previous section for bubbles with out tilts. This inverse map are
obtained by replacing t with -t in (67). The center of the potential fuinction starts at location
RO =x.(t1 ) and 5QtO

The solution for the inverse coordinate transform proceeds in two steps. First, the initial
equation in (67) is solved to yield the fuinction x,(t) for the horizontal displacement of the
bubble potential fuinction. Next, the system given by (68) is integrated as the potential
follows a trajectory [Rc(i), ý'v#i)] to end at the origin of the normalized coordinate system

where RO 0 and ýO 0. The curves in Figure 16 show the [Rc(i), ýJi)] trajectories as a
function of the internal polarization factor ay. As previously discussed with (42), the inverse
coordinate map equations are integrated from t i to t = 0. The initial conditions for (63)
are

R(t = R, and ý0 (-tl) =(69)
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Figure 18 Computed examples of(a) inverse coordinate map at t = 4 and (b) corresponding
ionospheric bubble densities at t = 1200 seconds for the electric potential moving through a
sheared plasma with small internal polarization (ay - 0.1). The parameters for the
simulation are identical to those used to generate Figure 11 which can be used for
comparison to illustrate the effects of the zonal wind on tilting the bubble.

The inverse coordinate map for the rising bubble the sheared plasma flow is illustrated in

Figure 18a in normalized coordinates at the normalized time t = 4. Using (68), this
coordinate map presents the origin of the plasma cells that have been transported to the west
by the wind induced horizontal transport and the gravity induced vertical transport. The
parameter ay is set to zero so the horizontal transport by internal polarization of the equatorial
bubble is neglected.

When the inverse coordinate map is applied to the background plasma layer, the electron
densities are to form the tilted plume structure in Figure 18b. The depletion at the center of
the bubble is the result of incompressible convection from the bottom to the topside of the
layer. In this model, the reduced density channel extends over 100 km down though the layer
to the bottom of the F-region. The absolute spatial dimensions are derived using a scale
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length r0 = 30 km and a base height Yco = 370 km. As with Figure 16, the time normalization

factor is 300 seconds.

VI. Parameter Normalization in the Analytic Models of the Disturbed Ionosphere

In the simulations of the previous three sections, the electric potential was fixed as it rose
through the plasma layer forming bubble structures. The next step in the quasi-analytic
modeling is to adjust the model parameters to make the computed electron density consistent
with the electric potential. The appropriate values of both parameters (ax and b) are obtained
by comparing the analytic solutions given in (19) with the quasi-analytic solutions obtained
by compressing the F-layer coordinates using (42) for an untilted bubble or (67) for a plume
with internal polarization and plasma shear flow.

The vertical bubble motion comes from polarization of the horizontal density gradients. The
horizontal Pedersen conductivity from (19) though the center of the electric potential is given
by

2(D(,0)= exp{ a(l + m) 2tanrB1 2, R sign(a) al CO (1+ ib)2 (70)

L Al A Ij 1-a-Bl I15 lb +2b

where A,=,/-a[4b+a(b-1) 2 ]and B 1=-a(b-1)-2 and [•[=-. Assume that the

electron density at the equator is directly proportional to the integrated Pedersen
conductivity. In absolute coordinates, the analytic model for the horizontal electron density
profile through the center of the bubble is

Na(l +m) An i 2 1 Xp/R, lb ]t C, (1+ 1 Xp/R I Bb)2
Ne(Xp,yc(t))-- exp] 2tan1 B1-2I~R - 1 -sign/Ra)b)

e A, [A 1  (=A-a-BIxp/RI b +Ixp/R 12b

(71)
where x, = x - xc(t) is the horizontal distance relative to the center of the potential function

and {xc(t), yc(t)} is the location of this center. The corresponding electric potential is

D(x, y, t) = Bo [x-xr(t)] Vyo(t) + [y- yc(t)] VR (y (t)) (72)
1+ Rx-xI(t).1 +J ry-yo(t)

where ax(t), b(t), RI(t), and CI(t) are parameters that will be allowed to vary with time as the
bubble evolves. The bubble rise velocity Vyo(t) = a. (t) ETX and the bubble retardation

B0

velocity V, =ayV shave been defined in the previous sections. The electric potential

follows a trajectory given by
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a)xe
t= V 0 (y) = (1- ay)Vxs(yr)

Yt = Vy (t)=a,(t) ET

at~ Bo

With this trajectory, the Lagrangean coordinate map

aX(Xo,Yo,t)= I (x, y,t) +Vxs(Y) and ,y(x°'yot) - 1 aD(x,y,t) (74)
at B0  ay at Bo ax

is again used to determine the distortion of the plasma layer. The normalization procedure
fits the function given by (71) to the densities determined using the Lagrangean transport
given by (74) as applied to the stratified plasma profile.

Tests of the normalization procedure has demonstrated that the numerical value for the
temporal normalization constant a. ETx/(BO r0) is equal to approximately 70% of the

calculated growth rate y = (-ETx/BO)/LN of the instability so that the parameter ratio

- r0/ax =-LN/0.7. The recommended procedure for providing reasonable models of
equatorial bubbles is to first choose a scale length r0 that matches the dimension of the "seed"
needed to produce the bubble. Second, select the potential amplitude using the simple

expression a. -- 0.7 rO/LN where LN = Ne(y)/ Ne(y) is the initial scale length of the
ay

bottomside of the background ionosphere.

At this point, all the steps outlined in Figure lb have been completed and the densities for the
ionospheric bubble can be computed with relative ease. The only numerical computation is a
solution of the ordinary differential equations (74) which are applied to the model of the
unperturbed ionosphere. The formulas described here provide the electron densities for
propagation of OTH radar signals through the layers to determine the effects of plasma
bubbles on the ground clutter signals. The ray trace procedure is described in the next
section.

VU. Ray Trajectories Through the Unstable Ionosphere.

Propagation of HF waves in the ionosphere has been studied for over one-half century. The
raytrace code developed to study OTH radar clutter is based on the theory provided by
Hazelgrove [1954], Yeh and Liu [1972], Jones and Stephenson [1975], and Budden [1985].
A ray trajectory is characterized by a position vector r = (x, y,z) and a wave normal direction
characterized by the refractive index vector n = (nxnyn.). The wave normal vector k is

related to the refractive index vector by k = n Co/c where co is the wave frequency. If the
wave phase 0 along the ray path starts with a value of zero. At each point on the ray, a
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dispersion equation is satisfied with the form D(x, y, z, n,, ny, n, 0o) = Constant. The

canonical equations for the ray path are written as

Dr V D a)n VrD
-r_ nD and -n= VrD (75)

WP'co dDldco DP' co dDIdo)

where Vn and Vr are the gradient operator in refractive index and Cartesian space,
respectively, P'= ct is the group path and c is the speed of light. The scalar multiplier
dD/dco is defined as

dD aD an aD n
-=--+ .V D --- V.D(76)

d o) =CO " &D n 0a) (0

The phase path front P = cb- differs from the surface of constant group delay P'. The phase
co)

front is computed using

- n - VD (77)
aP, DP' 0o dD/dco

Two forms of the dispersion equation are used to trace the rays. The Appleton-Hartree
dispersion formula is

Dt = n2 +n2 -1 + X(- _ X)/[Xy 2 Sin2m,/2 R(Bx, By, By , nx, nynz)] =0 (78)

where the radical R = Vy4 Sin4-q/4+ y 2 Cos 2AY (1- X)2 , the plasma frequency squared is

2 = e2N e(me), X = (02/0 2 the plasma frequency normalized by the wave frequency,

Y = eB/(meco) the gyro frequency vector normalized by the wave frequency, and xV the angle

between the wave normal and the magnetic field defined by n B = n B CosxV . The + and -
signs in (76) refer to the ordinary and extraordinary modes, respectively. The Booker
Quartic dispersion equation is

Dq = (1 - X - y2) n4 + X (n. Y) 2 n2 +i[y2(2 - X) - 2(1 - X)2 ] n2 -X (n.y)2 +(1- X)[(1-X)2 -y 2]

(79)

In the plasma where X a 0.1, dispersion equation (79) is used and if X < 0.1, (78) is used to
trace the rays. This selection preserves the identity of the mode and allows the rays to
change direction at reflection points.

The purpose of the ray tracing is to compute the Doppler shifts of the ground clutter signal in
a non-stationary ionosphere. Doppler frequency shift along the ray path is given by
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dAe0 1 DD/at 1 aD/DNeO Ne/at (80)

fP' c dD/do) c dD/dc0

where it is assumed that all temporal variations in the dispersion are due to fluctuations in the
electron density. For this study, the electron density changes are assumed to be the result of
transport by electric fields as described in the previous sections. From (1) and (22), the
electron density changes due to incompressible transport is given by

aNe = -v. VrNe = VrXB VN (81)
at B0

Combining (80) and (81) yields the equation of the Doppler shift of the received signal in
terms of the gradients in the electric potentials and the electron densities in the ionosphere.

dA~o aD/DN, v aD/aNe VA~ x Bd~• •D•)evVNe =2)/)N •x .VrNe (82)

dP' dD/do0 c dD/dco c B(

The Doppler shift for reflection from the ionosphere is referenced to the maximum Doppler
shift for specular reflection from a moving mirror given by

Aorn = 2 .o v (83)
c

where vii is the velocity parallel to the line of sight. A vertical radio ray reflecting the
ionosphere at normal incidence will have the Doppler shift of (83). For ground clutter, the
maximum Doppler shift is 2 Ao)• because for ground clutter the ray has two reflections
from the ionosphere and one from the ground before coming back to the transmission source.
A radio wave reflecting with oblique incidence will have a Doppler shift less than
2 Aco. with a limiting value of zero shift for a horizontally propagating ray with no

ionospheric interaction.

The procedure for modeling the OTHR clutter from equatorial bubbles in the ionosphere is to
use the quasi-analytic bubble derived in the previous sections to describe the electron density
gradients and the electric potential variation. Rays are traced through this ionosphere using
(75), (76), (77), and (82). The electron density enters into the equations through (1) the
parameter X in the dispersion equations (78) and (79) and (2) the Doppler frequency given
by (82). The ray propagates from the ground radar source, is bent by the bottom side
ionosphere, and is terminated when the ray path intercepts the ground. The radar signal is
scattered by the ground and the ray path follows the identical trajectory back to the radar
source. The Doppler at the radar receiver is twice the Doppler at the ground scattering point.

As a test of this ray trace model, the Doppler shifts in the ground clutter will be computed
from the F region vertical drifts observed in the quiet time ionosphere. Scherliess and Fejer
[1999] use data from the incoherent scatter radar at Jicamarca, Peru and ion drift meter
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measurements from atmospheric explorer to derive a global, empirical model of the vertical
drifts at the equator. These drifts are in addition to the horizontal plasma drifts illustrated in
Figure 14 and the internal plasma drifts associated with the equatorial bubbles. The
Scherliess-Fejer model provided the variation in vertical drift illustrated in Figure 19 for
calendar days 100 and 240. The largest variation in the vertical drift occurs between 1800
and 2000 local time near dusk. In the spring (Figure 19a) the vertical drift changes from 45.7
m/s upward to 37 m/s downward over the period of two hours. In the summer (Figure 19b)
the variations in the vertical drift are smaller.
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Figure 19. Local time variation in equatorial vertical drift for quiet time periods. The
empirical model drifts represent the longitude near 660 Wfor (a) solar radio flux of 200 for
a day in April and (b) solar radioflux of 116 at the end ofAugust.
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Tracing rays though a model ionosphere Figure 13 with the Scherliess-Fejer drift model in
c

(82) gives the predicted Doppler shifts. These will be multiplied by - c, giving the2(o

equivalent radial velocity for reflection from a horizontal target. Figure 20a shows the ray
paths which are launched with zenith angels ranging from 0 to 80 degrees. The computed
Doppler shifts in the received echoes are illustrated in Figure 20b in terms of equivalent
radial velocity. The vertical velocities for the ionosphere are taken from the values in Figure
19 at 17:44 local time. One sample of measurements for the radial velocity at a similar local
time is shown in Figure 21. The measured Doppler shift of 9.4 m/s is shown by the circle in
Figure 20b. The results of this ray trace test show that the ray trace model yields reasonable
results for a uniformly rising layer. In practice, the uniform lifting of the ionosphere will
produce a shift of all radar signals by a constant amount. This shift will not obscure the
radial motion of any targets, since they will share the same apparent Doppler shift.
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Figure 20. Model calculations of(a) ray trajectories and (b) Doppler shift in ground clutter
for two vertical drifts speeds at 17:44 local time. The shortest group paths are for the
vertical rays with radial velocities twice the vertical speeds. The measured Doppler shift is
illustrated in Figure 21.
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Figure 21. Doppler shift ground clutter on 30 August 2002 at 17:44 Local Time in the
Puerto Rican longitudes. The radar frequency is 24.4 Mfz and the radar range bin is
around 2500 km. The center of the ground clutter peak is found at a radial velocity of 9.4
m/s.

Future research will combine the equatorial model densities illustrated by Figure 18 and the
raytrace code used to generate Figure 20. The equatorial bubble densities will be extended
along the magnetic meridian using a Dipole field model given by (51). With the dynamics of
the equatorial bubbles used in wave propagation, complex Doppler shifts will be generated
that provide ground clutter that spreads in frequency or radial velocity. The quasi-analytic
tools derived here are uniquely suitable for ray trace studies of ground clutter generation
because the rays can be rapidly traced though the density structures and because the Doppler
velocities are directly computed by projection of the plasma motion vector along the ray
wave normal.
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VII. Summary

Using quasi-analytic solutions of the plasma transport and radio propagation equations, a
model was derived to study the effects of ionospheric motion on OTH radar clutter. The
quasi-analytic formulation has been derived to imbed ionospheric bubbles in a model
background ionosphere. This technique provides a three-dimensional electron density
description using the mapping by the electric potential functions of the initial distribution of
the ionosphere. This technique has the advantage over a full numerical simulation by
providing (1) factors of 10 to 100 enhancements in computational speed, and (2) analytic
formulations that are much easier to us for numerical raytracing. The analytic formulation
has been benchmarked against full three-dimensional simulations of equatorial bubbles
[Zalesak, et al., 1982] currently in use at the Naval Research Laboratory for irregularity
simulations. The effects on OTH radar ray-path bending and range Doppler spread for
ground clutter have been tested for vertical motion of the equatorial ionosphere. Future
studies will investigate for ray paths through the equatorial bubbles that are moving both
horizontally and vertically. Finally, possible mitigation strategies for reducing OTH radar
clutter effects will be will be tested.
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Appendices

Appendix A. Numerical Solution of the Potential Equation Using a Direct Solver.

Numerical solutions are required when conditions of simplified geometries or uniform flows
yield a complicated, nonlinear partial differential equation for the electric potential. In
Cartesian coordinates, the non-separable elliptic equation that describes the electric potential
is given by (7) and is repeated in equivalent form here

a245 ay_ _ _ _(l

-+ ,p-+x 2& + alpab=app R2---T-t +- I -p •)-- -T •- (Al)

The conductivity function Y.(R, Y) is known and the potential function i(), Y) is found as a
numerical solution to the equation (A1).

This equation is converted into a set of linear equations using the usual finite difference
approximations to the derivatives given by

_ ) (_ i+lj - 2(Dij + (i-1,j
aR2 AR2

a -2 ) (Di*j+! - 2.J.i j -+- (ij-1

- m -(A2)

ai•) Flli+l j -- i•iilj

D 2AR
a45 41)i j+l -- i-i j l

D.• 2A9

The Pedersen conductivity is sampled in the uniform solution grid spaced by Ax and Ay to
form the array variables Y.ij with (i=1,2, ... , M) and 0l, 2, ... , N). To complete the

solution, boundary conditions of periodic, fixedlDirichlet, derivative/Neumann or mixed
form are provided.

The unknowns (Dij for (i-1,2, ... , M) and (jl, 2, ... , N) are grouped into linear arrays given

by

Xj-" [(Il,j ... (D)M,j] (A3)

The resulting linear system can be written as an extended tri-diagonal matrix
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B1  C1  0 -.. 0 0 Al X 1  Y,

A 2 B 2 C 2 ... 0 0 0 X 2  Y2

0 A 3 B 3 "'" 0 0 0 X 3  Y3
: : : ". : . : . . (A5)

0 0 0 ... BN_ 2 CN_2  0 XN_ 2  YN-2

0 0 0 "'" AN-I BN-1 CN-I XNI 1 N-1

DA D 2 D 3 "" DN-Z DN-1 DN XN YN

where the M x M block matrices A, B jand Cj are functions of the finite difference

parameters and the Pedersen conductivity samples Vij" The matrices A1 and D1 are needed

for periodic boundaries in the y-direction. The string of matrices [D1, D2, D3, ... , DN-1, DN]
allow inclusion of an additional condition on the potential such as

ffi•(j, ,•) dJR dý = 0 . (AM)

This condition arises when the addition of a constant to a solution also yields solution. The
nonuniqueness occurs if the boundary conditions are completely periodic and/or specified by
constant derivatives (i.e., Neumann). With these types of boundary conditions, (A6) prevents
the square matrix in (A5) from being singular and a numerical solution can be obtained.
Finally, the right side of (A1) and boundary conditions are contained in the linear arrays YJ.

The algorithm for solving (A5) is a generalization of the Thomas Algorithm for scalar
tridiagonal systems [Dahlquist and Bjorck, and Anderson, 1974]. Initialize with new matrix
variables

a = B 1, S1 =a .Y1 , a2 = a, C1 , b, = -a. Al (A7)

Continue with the equations

a, =aUil *.I., aI =[BI -Ai -a,]', S, = c [YI -AS,. 1 ], b, =-a* AI.1 *.bI (A8)

for the index in the range i = 2,..., N- 1. The next operations define a new set of variables
starting with SN = 0, b' = I, where I is the M x M identity matrix, and continue with

SN', =SN, aNStrlSN bN, t bN_ - aN +lbN_+1 (A9)

for the index "i" in the range i = ,..., N - 1. The solution for j = N is given by

N [ N _1

XN= ED.-- YN-EDI.S . (AlO)
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The remaining solution vectors are found from
X, =S'+b'.XN (All)

where the index "i" is given by the range i = 1,..., N - 1. This algorithm was used to provide
the numerical potential solutions illustrated in Figure 5 and the data given in Tables II and
III.

Appendix B. Exact Solutions to the Elliptic Potential Equation in Cartesian
Coordinates

An analytic solution to the non-separable elliptic equation that relates the Pedersen
conductivity to the electric potential in the ionosphere was given by (16). A localized plasma
structure may become polarized in a gravitational, neutral wind or electric field flow field.
The equation describing this polarization has been given by (4) as

V1 .(l PvI) = V.. *fIE 0 + (U + -) x B] o dz = ET (31)
Vin

In Cartesian coordinates, (B1) was written as (7) assuming that only a horizontal equivalent
electric field ET-x was present. Here, the total electric field that drives the potential in the
general case is assumed to have the from

ET = ET (cos a R +sin a Y)

where Y. and Y are the unit vectors in the x- and y-directions and a is the angle between the
equivalent driving field and the x-axis. In Cartesian coordinates, this equation becomes

a2o$ a]Log(jp) aCD a2CD aLog(yp -

"-aR ON aC +- -'• oy (B2)
=cosa a~ogCF•) + sinma og(lp)

where the normalizations F = 0/(r0 ET), I = x / r0 , and y = y/r0 have been used. A general

solution can be found using separation of variables with

0(5, ,) = F(R) GY(Y) (33)

and

lp(R, Y) = H(Y) Exp[ L.(R)] (B4)

With these substitutions into (B2), the solution for the derivative of the L, is found to be
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LI(i) = [F(x) G;(y)- sina ] H'(.) + H(y) [Gy(y) F'(R) + F(R) G()] (B5)H(9) [cosa - Gy(ý) F'(R)]

The functions Gy (Y) and H(.) are chosen so that only a function of i remains. Examination

of the denominator of (B5) requires that

Gy(Y) = cos a (B6)

to eliminate one of the functions of .. With this substitution, @B5) becomes

L' (R) = tana H'(y) - H(Y) F(R) (B7)X H(.•) [ F'(F) - I I

The Y -dependence in H(.) is eliminated by forcing H'(y)/H(y) = m with the substitution

H(.) = Exp(m Y) (B8)

yielding

L' (R) = m tana - F'(I) (B9)F'(5i)-I

This result (B9) yields the second equation in (13) if F(K) = (a0 + a1k) G(I Si 1) and a(=0. To
summarize, the one dimensional potential function

(D(Fc, Y) = F(Si) cos a @B10)

is found from is found from (B3) and (B6) for an external electric field ET making an angle a
with the horizontal axis. The corresponding Pedersen conductivity function is found by
substituting (B8) and the integral of (B9) into (B4) with the result

p (x, y) = emyexp[ rm tan a- FP(x)] (Bl)
SJ eF(x) - 1 -1

Rotation of the coordinate axes (F, .') by a so that ET is horizontal will yield solutions for
obliquely oriented potential functions.

The solution in (B 11) is only valid if ca # r/2. For the case that cos a = 0, (B5) becomes

LI(S)=- [ F(R) G'y(5) -I] H'(.') + H(.') [Gy(,') F"(R) + F(R) Gy(5)] @12)
H(ý) Gy (ý) F'(i)
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The only substitutions that eliminate the 5 -variations in (B12) are

H(.) = 1 and Gy(.) =C 1 exp( - n5)+ C2 exp(ný) (B13)

where C1 and C2 are constants. The resulting log-density function is

n2 F(R) + F'(i)L'(R) = _ (B14)

To summarize, for the special case that the ET vector is aligned with the . -axis (a = 7d2), a
potential function of the form

4(D, ?) = (C, e- + C2 e"y) F(K) (B315)

is produced by a Pedersen conductivity variation with the form

F exp[- jn F(x) + F-() dx]. (B16)

Rotation of the solutions in (B14) and (B15) by 7r/2 yield solutions for a horizontal electric
field ET of the form

(')= (C1 e-n + C2 ex) F(') and px ) = exp[- jn F(() F(Y)dy] (B317)

These solutions co-exist with the horizontal electric field ET (a-=0) solutions of (B310)

=(c, F(R) and Ip (x, y) = em exp F(x)- ] (B18)

Thus, with a horizontal external electric field (or equivalently a vertical gravity or neutral
wind force), two separate families exact solutions for potentials and densities are available
with (317) and (B18). With rotations the equations (B10) and B(ll), a large number of
exact oblique solutions can be generated. The example illustrated in Figure 2 is only a small
of sample of the analytic results for Cartesian coordinate geometry.
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Appendix C. Exact Solutions to the Elliptic Potential Equation in Cylindrical
Coordinates

A second general solution to the potential equation can be derived by using cylindrical
coordinates by selecting either radial or axial symmetric for the function representations. As
defined previously in (4) and (B 1), the elliptic equation describing the relation between the
Pedersen conductivity (Yp) and the electric potential (0) is given as

V±. (YpVl(I) = V.l -[E0 + (U+ -R-g) x B] apdz = ET (Cl)
Vin

Assume that ambient forces yield motion in the y-direction by an equivalent electric field ETx
in the x-direction given by

ETX - [E 0. + (Ur - g°)B0 ] (C2)
Vin.

The cylindrical (r, 0, z) coordinates are related to Cartesian coordinates by

x = r CosO

y = r SinO (C3)

Z=Z

and the unit vector in the x- direction is

S= cosO f - sinO 0 (C4)

In the cylindrical coordinate system, the potential equation becomes
P~202(I) D(I) a 2 (I) 2 ODp O(ID aEp D(I~ r2 Cos0__r i0•_0

- +r--+-5O-)+r Pr P- ET.(r 2 I-0 C - rSin0 (C4)
C r or DO DO ar

After normalization this equation is written as

i2 a2CD a0b a2dý -2 a10g(yp) aCD a109(1p) adý+r-+-+ +r

af 2  j a0 ar DO DO (C5)
=i2 cos0 ig[p •sin0 a1°g[EP]

=r cos DO

where the previously defined normalizations (D = VET. and i = r/r0 have been used.

To obtain one class of radial-dependent solutions, apply separation of variables with the
substitutions

D(?, 0) = F( 0 ) G, (Fr) (C6)
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and

1,(?, 0) = H(0) exp[Lr(F)] (C7)

Then, solve for Lr(?) in terms of functions that only depend on r. With the substitution of
(C6) and (C7) in to (C5), the solution for the first derivative of Lr(?) is

S- [ sin 0 + Gr (?)F'( 0 )]H'( 0)+ Gr(i)H( 0 )F'( 0)+ ? F( 0 )H( 0)[ G'(?) + ? G,(?)]
r 2H( 0 )[cos 0 - F( 0 ) G (i)]

(C8)

The first step in elimination of the 0 dependences on the right side of (C8) is to let
F( 0) = cos 0 with the result

L()=Gr(, [1 + tan 0 H'(0 )/H( 0)] i [tan 0 H'(0 )/H(0) + G'(i) + i G-,(i)] (9

i2 [G'(i)-I]

Next, the 0 dependent relation tan 0 H'( 0 )/H( 0 ) in (C9) is set equal to a constant "m". The

solution of tan 0 H'( 0 )/H( 0) = m is H( 0) = C1 sin m0 where CI is a constant. With these
substitutions, (C6) and (C7) become

D(?,0) = cosO Gr(?) and "p (F, 0) = sinm0 exp[Lp (T)] (CIO)

and (C8) is reduced to

L;(m)= rm+(1+im)Gr(r)-Gr(r)- G-(r) (C 1)
L2[l + G(-()]

where the right side is only a function of i. After integration and substitution into (C7), the
Pedersen conductivity is found to be

S7m~(1+(lm)G,()r ••)7 21 G'(] G(r) G' (12

7,(F,0) = sin m0 exp{ iGr G r (C12)
i2[+ G, (D)]

Equation (C 12) identical to (16) if Gr(?) = ? G(?) and Lp() = L'(?) - n/lF.

To obtain a complementary set of angular-dependent solutions, use separation of variables
with the functions

D(i, 0) = Fe( 0 ) G( ) (C13)
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and

Iv(r, 0) = H( 0) exp[Le( 0)] (C14)

and solve for Le( 0) in terms of functions that only depend on 0. With (C13) and (C14),

(C5) is rewritten as

L'(0) = r2 cos 0 H'(?) + G(ir) H(?) F."(00+ ? FO (00) G'(?)[H(-r) + ? H'() ]+ ? H(?) G'(?r)}
0 H(-r)[? sin 0 - G(Fr) V,( 0 )

(C15)

The first step for elimination of functions of r from (C 15) is to let G(?) = so (C 15)
simplifies to

L'( 0) = i cos 0 H'(-)/ H(i) + FO'( 0 )+ F0 ( 0 )1 + r H'(i)/H(i) ]}(C16)
sin 0- FO(0)]

The r dependence is removed from (C 16) by letting H(Fr)= r so r H(i)/H(F)=-m where
"m" is a constant. With this substitution, (C 16) is further reduced to

L'(0) = m cos 0 + F9'(0) + FO(0)(l+ m)}
sin0-Fe(0)

In summary, if the potential has the form

(D(-,0) = i Fe(0) (C17)

and the Pedersen conductivity has the form

Ip (i, 0) = im exp[L,( 0)]. (C18)

This is written out as the integral equation

({m cos 0 + (I + m)Fj(0) + Fo(0) dO} (C19)i sin 0 - F'( 0 )

This solution is given for completeness. There have been no useful applications of (C 19) to
the ionosphere because the initial potential grows with radius and the radial electric field
extends indefinitely.

56



References

Basu, B., On the linear theory of equatorial plasma instability: comparison of different
descriptions, J. Geophys. Res., 107, doi: 10.1029/2001 JA0003 17, 2002.

Bernhardt, P.A. and J.U. Brackbill, "Solution of Elliptic Equations Using Fast Poisson
Solvers," J. Comp. Phys., 53, 382, 1984.

Bernhardt, P.A., Cross-B convection of artificial created, negative-ion clouds and plasma
depressions: low-speed flows, J. Geophys. Res., 93, 8696-8704, 1988.

Bernhardt, P.A., Eye on the Ionosphere: Ionospheric Profiling by GPS Receiver Occultations,
Taking Advantage of Existing Earth-Based Infrastructure, GPS Solutions, 9, 174-177,
2005.

Budden, K.G., The Propagation of Radio Waves, Cambridge University Press, Cambridge,
1985.

Chen, K. Y., H. C. Yeh, S. Y. Su, and C. H. Liu, Anatomy of plasma structures in an
Equatorial spread-F event, Geophys. Res. Lett., 28, 3107, 2001.

Huang, C. S., M. C. Kelley, and D. L. Hysell, Nonlinear Rayleigh Taylor instabilities,
atmospheric gravity waves, and equatorial spread-F, J. Geophys. Res., 98, 15,631,
1993.

Huang, C. Y., W. J. Burke, J. S. Machuzak, L. C. Gentile, and P. J. Sultan, DMSP
observations of equatorial plasma bubbles in the topside ionosphere near solar
maximum, J. Geophys. Res., 106, 8131, 2001.

Huba, J. D., G. Joyce, and J. A. Fedder, Sami2 is another model of the ionosphere (SAMI2):
A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035, 2000.

Hysell, D. L., C. E. Seyler, and M. C. Kelley, Steepened structures in equatorial spread-F:
Theory, J. Geophys. Res., 99, 8841, 1994.

Kelley, M. C., J. J. Makela, B. Ledvina, and P. M. Kintner, Observations of equatorial
spread-F from Haleakala, Hawaii, J. Geophys. Res., 29, doi: 10.1029/2002GL015509,
2002.

Keskinen, M. J., S. L. Ossakow, S. Basu, and P. Sultan, Magnetic flux tube integrated
evolution of equatorial ionospheric plasma bubbles, J. Geophys. Res., 103, 3957,
1998.

Keskinen, M. J., S. L. Ossakow, and P. K. Chaturvedi, Preliminary report of numerical
simulations of intermediate wavelength collisional Rayleigh Taylor instability in
equatorial spread-F, J. Geophys. Res., 85, 1775, 1980.

Kil, H., and R. A. Heelis, Global distribution of density irregularities in the equatorial
ionosphere, J. Geophys. Res., 103, 407, 1998.

Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson, Geomagnetic conjugate observations
of equatorial airglow depletions, Geophys. Res. Lett, 29,
doi: 10.1029/2002GL015347, 2002.

Ott, E., Theory of Rayleigh -Taylor bubbles in the equatorial ionosphere, J. Geophys. Res.,
83, 2,066, 1978.

Richtmyer, R.D., and K.W. Morton, Difference Methods for Initial-Value Problems,
Interscience, New York, 1967.

Sahai, Y., P. R. Fagundes, and J. A. Bittencourt, Transequatorial F-region ionospheric
plasma bubbles: Solar cycle effects, J. Atmos. Terr. Phys., 62, 1377, 2000.

57



Scannapieco, A. J., and S. L. Ossakow, Nonlinear spread-F, Geophys. Res. Left., 3, 451,
1976.

Scherliess, L., and B. G. Fejer, Radar and satellite global equatorial F region vertical drift
model, J. Geophys. Res., 104, 6829, 1999.

Sekar, R., R. Suhasini, and R. Ragvaharo, Evolution of plasma bubbles in the equatorial F-
region with different seeding conditions, Geophys. Res. Lett., 22, 885, 1995.

Stephan, A.W.,M. Colerico, M. Mendillo, B.W. Reinisch, and D. Anderson, Suppression of
equatorial spread-F by sporadic E, J. Geophys. Res., 107,
doi: 10.1029/2001JAOOO 162, 2002.

Sultan, P. J., Linear theory and modeling of the Rayleigh -Taylor instability leading to the
occurrence of equatorial spread F, J. Geophys. Res., 101, 26,875, 1996.

Weber, E. J., et al., Equatorial plasma depletion precursor signatures and onset observed
south of the magnetic equator, J. Geophys. Res., 101, 26,829, 1996.

Yeh, H. C., S. Y. Su, and R. A. Heelis, Storm time plasma irregularities in the pre-dawn
hours observed by the low latitude ROCSAT-1 satellite at 600 km altitude, J.
Geophys. Res., 28, 685, 2001.

Yeh, K.C., and C.H. Liu, Theory of Ionospheric Waves, Academic Press, New York, 1972.
Zalesak, S. T., Fully multidimensional flux corrected transport algorithms for fluids, J.

Comput. Phys., 31, 355, 1979.
Zalesak, S.T., S.L. Ossakow, P.K. Chaturvedi, Non-linear equatorial spread-F - The effect of

neutral winds and background Pedersen conductivity, J. Geophys. Res., 87, 151-166,
1982.

58


